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Abstract

A multidegree-of-freedom system having symmetrically placed rigid stops and subjected to periodic excitation is

considered. The system consists of linear components, but the maximum displacement of one of the masses is limited to a

threshold value by the symmetrical rigid stops. Repeated impacts usually occur in the vibratory system due to the rigid

amplitude constraints. Such models play an important role in the studies of mechanical systems with clearances or gaps.

Double Neimark–Sacker bifurcation of the system is analyzed by using the center manifold and normal form method of

maps. The period-one double-impact symmetrical motion and homologous disturbed map of the system are derived

analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a four-dimensional one, and

the normal form map associated with double Neimark–Sacker bifurcation is obtained. The bifurcation sets for the normal-

form map are illustrated in detail. Local behavior of the vibratory systems with symmetrical rigid stops, near the points of

double Neimark–Sacker bifurcations, is reported by the presentation of results for a three-degree-of-freedom vibratory

system with symmetrical stops. The existence and stability of period-one double-impact symmetrical motion are analyzed

explicitly. Also, local bifurcations at the points of change in stability are analyzed, thus giving some information on

dynamical behavior near the points of double Neimark–Sacker bifurcations. Near the value of double Neimark–Sacker

bifurcation there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-

periodic impact motions are represented by the closed circle and ‘‘tire-like’’ attractor in projected Poincaré sections. With

change of system parameters, the quasi-periodic impact motions usually lead to chaos via ‘‘tire-like’’ torus doubling.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrating systems with clearances, gaps or stops are frequently encountered in technical applications of
mechanism, vehicle traffic and nuclear reactor, etc. Repeated impacts, i.e., vibro-impacts, usually occur
whenever the components of a vibrating system collide with rigid obstacles or with each other. The principle of
operation of vibration hammers, impact dampers, inertial shakers, pile drivers, offshore structures, machinery
for compacting, milling and forming, etc., is based on the impact action for moving bodies. With other
equipment, e.g., mechanisms with clearances, heat exchangers, fuel elements of nuclear reactors, gears, piping
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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systems, wheel–rail interaction of high-speed railway coaches, etc., impacts also occur, but they are
undesirable as they bring about failures, strain, shorter service life and increased noise levels. Researches into
vibro-impact dynamics have important significance on optimization design of machinery with clearances or
stops, noise suppression and reliability analysis, etc. The physical process during impacts is of strongly
nonlinear and discontinuous characteristics. Therefore, application of standard analytical tools based on
linearization will fail to capture essential ingredients of the response. The presence of the nonlinearity and
discontinuity complicates the dynamic analysis of repeated impact systems considerably, but it can be
described theoretically and numerically by discontinuities in good agreement with reality. Compared with
single impact, the vibro-impact dynamics is more complicated, and hence, has received great attention. Many
new problems of theory have been advanced in researches into vibro-impact dynamics, and the study of vibro-
impact problems becomes a new subject on nonlinear dynamics. Some important problems on vibro-impact
dynamics, including global bifurcations [1–10], singularities [11–19], chattering impact [20], quasi-periodic
impacts [21–24] and controlling chaos [25], etc., have been studied in the past several years. Along with the
basic researches into vibro-impact dynamics, the researches into application to these systems are developed,
for example, wheel–rail impact of railway coaches [26–28], impact noise analysis [29,30], inertial shakers
[31,32], vibrating hammer [33], offshore structure [34], impact dampers [35–40] and gears [41–44], etc.

A multidegree-of-freedom system having symmetrically placed rigid stops and subjected to periodic
excitation is considered. The system consists of linear components, but the maximum displacement of one of
the masses is limited to a threshold value by the symmetrical rigid stops. Such models play an important role in
the basic research of vibro-impact dynamics. As a result, the majority of the previous work idealizes analyses
of stability, bifurcation and singularity of these systems as single-degree-of-freedom oscillators with rigid stops
by analytical and numerical approaches, e.g., see Refs. [1–6,11–17,33]. Periodic-impact motions and
bifurcations of two-degree-of-freedom systems with rigid stops are analyzed by numerical simulation in Refs.
[7,8,22–24,26,27]. Finally, Bernardo [19] study C-bifurcations of multidegree-of-freedom systems with rigid
stops and give the normal form map of C-bifurcations. The other references, in the paper, consider the
vibratory systems with soft stops (see Refs. [21,25,28,34]) and the systems of which components collide with
each other(see Refs. [31,32,35–42]). The present analysis extends the previous work on vibratory system with
rigid stops by developing an efficient way of determining exact periodic motions and local bifurcations for a
general multiple-degree-of-freedom system, with a component that possesses symmetrically placed rigid stops.
The purpose of the study is to focus attention on stability and codimensiom two bifurcations of period-one
double-impact symmetrical motion of the system. There are many types of codimension two bifurcations of
ordinary differential equations and maps, some of which have been studied in Refs. [45–49]. Double
Neimark–Sacker bifurcation of the vibratory systems with symmetrical rigid stops is investigated in the paper.
The existence, stability and local bifurcations of period-one double-impact symmetrical motion are analyzed
explicitly. Local behavior of the vibratory systems with symmetrical rigid stops, near the points of double
Neimark–Sacker bifurcations, is reported by the presentation of results for a three-degree-of-freedom
vibratory system with symmetrical rigid stops.
2. Mechanical model

A multidegree-of-freedom system having symmetrically placed rigid stops and subjected to periodic
excitation is shown in Fig. 1. Displacements of the masses M1;M2; . . . ;Mn�1 and Mn are represented by
X 1;X 2; . . . ;X n�1, and Xn, respectively. The masses are connected to linear springs with stiffnesses
K1;K2; . . . ;Kn�1 and Kn, and linear viscous dashpots with damping constants, C1;C2; . . . ;Cn�1 and Cn.
Damping in the mechanical model is assumed as proportional damping of the Rayleigh type. The excitations
on the masses are harmonic with amplitudes P1;P2; . . . ;Pn�1 and Pn. The excitation frequency O and phase
angle t are the same for these masses. The masses move only in the horizontal direction. For small forcing
amplitudes the system will undergo simple oscillations and behave as a linear system. As the amplitude is
increased, the kth mass Mk eventually begins to hit the stops and the motion becomes nonlinear (the other
masses are not allowed to impact any rigid stop). The impact is described by a coefficient of restitution R, and
it is assumed that the duration of impact is negligible compared to the period of the force.
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Fig. 1. Schematic of a multi-degree-of-freedom vibratory system with symmetrical rigid stops.
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Suppose M1a0; K1a0; and let F0 ¼ P1j j þ P2j j þ � � � þ Pkj j þ � � � þ Pnj j. The non-dimensional quantities
are given by

mi ¼
Mi

M1
; ki ¼

Ki

K1
; f i0 ¼

Pi

F0
; zi ¼

Ci

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1M1

p ; xi ¼
X iK1

F 0
; g ¼ zi=ki,

o ¼ O

ffiffiffiffiffiffiffiffi
M1

K1

r
; t ¼ T

ffiffiffiffiffiffiffiffi
K1

M1

r
; d ¼

BK1

F0
; i ¼ 1; 2; . . . ; k; . . . ; n. ð1Þ

The motion processes of the system, between consecutive impacts occurring at the stop A, are considered.
Between any two consecutive impacts, the time T is always set to zero directly at the starting point A (the mass
Mk departing from the X k ¼ B stop with negative velocity), and the phase angle t is used only to make a
suitable choice for the origin of time in the calculation. The state of the vibro-impact system, immediately after
impact, has become new initial conditions in the subsequent process of the motion. Between the stops, the
non-dimensional differential equations of motion are given by

M €xþ C _xþ Kx ¼ F sinðotþ tÞ ðjxkjodÞ, (2)

where a dot ( � ) denotes differentiation with to the non-dimensional time t, and M, C, K are the non-
dimensional mass, damping and stiffness matrixes, respectively, x ¼ ðx1; x2; . . . ;xnÞ

T, F ¼ ðf 10; f 20; . . . ; f n0Þ
T.

When the impacts occur, for jxkj ¼ d, the velocities of the impacting mass Mk are changed according to the
impact law

_xkAþ ¼ �R _xkA�; ðxk ¼ dÞ; _xkĀþ ¼ �R _xkĀ�; ðxk ¼ �dÞ, (3)

where _xkA� and _xkAþ ( _xkĀ� and _xkĀþ) represent the impacting mass’ velocities of approach and departure at
the instant of impacting with the stop AðĀÞ, respectively.

3. Period-one double-impact symmetrical motion and disturbed map

Impacting systems are conveniently studied by use of a mapping derived from the equations of motion.
Each iterate of this map corresponds to the mass Mk striking the stop A once we can characterize periodic
motions of the vibratory system with symmetrical rigid stops by the symbol n–p–q, where q and p is the
number of impacts occurring, respectively, at the constraint A and Ā, and n is the number of the forcing cycles.
In this section, only the periodic motion of the model, with two symmetrical impacts per force cycle, is
considered, which is called the period-one double-impact symmetrical motion. Let us choose the Poincaré
section s ¼ fðx1; _x1; x2; _x2; . . . ; xk; _xk; . . . ;xn; _xn; yÞ 2 R2n � S;xk ¼ d; _xk ¼ _xkþg to establish the Poincaré map
of the vibratory system with symmetrical rigid stops. The period-one double-impact symmetrical motion and
its disturbed map have been derived analytically in Appendix A. Here, the disturbed map of period-one
double-impact symmetrical motion is represented briefly by

X 0 ¼ ~f ðn;X Þ, (4)

where y ¼ ot, X 2 R2n, v is real parameter, v 2 R1 or R2; X ¼ X � þ DX , X 0 ¼ X � þ DX 0; X � ¼

ðx10;x20; . . . ;xðk�1Þ0; t0;xðkþ1Þ0; . . . ; xn0; _x10; _x20; . . . ; _xðk�1Þ0; _xkþ; _xðkþ1Þ0; . . . ; _xn0Þ
T is a fixed point in the hyper-
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plane s, the disturbed vectors of X* are represented by

DX ¼ ðDx1;Dx2; . . . ;Dxk�1;Dt;Dxkþ1; . . . ;Dxn;D _x1;D _x2; . . . ;D _xk�1;D _xkþ;D _xkþ1; . . . ;D _xnÞ
T,

DX 0 ¼ ðDx01;Dx02; . . . ;Dx0k�1;Dt
0;Dx0kþ1; . . . ;Dx0n;D _x

0
1;D _x

0
2; . . . ;D _x

0
k�1;D _x

0
kþ;D _x

0
kþ1; . . . ;D _x

0
nÞ

T.

Map (5) can be changed by

DX 0 ¼ ~f ðv;X Þ � X n ¼
Def

f ðv;DX Þ. (5)

Linearizing the Poincaré map at the fixed point X* results in the matrix

Df ðv; 0Þ ¼
qf ðv;DX Þ

qDX

����
ðv;0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2n

Þ

. (6)

The stability of 1-1-1 symmetrical motion is determined by computing and analyzing eigenvalues of Df ðv; 0Þ.
Variations of the parameters of the system will cause the fixed point and its associated eigenvalues to move. If
one of them passes through the unit circle in the complex plane, i.e., liðvcÞ ¼ 1

�� �� (vc is a bifurcation value), an
instability and an associated bifurcation will occur. In general, bifurcation occurs in various ways according to
the numbers of the eigenvalues on the unit circle and their position on the unit circle. Here, we shall consider
the case of v 2 R2, and dynamics of the system is studied with special attention to double Neimark–Sacker
bifurcation associated with 1-1-1 symmetrical motion.
4. Center manifold and normal form map

Let us consider the map X 0 ¼ ~f ðv;X Þ, in which v 2 R2. X* is a fixed point for the map for v in some
neighborhood of a critical value v ¼ vc at which Df ðv; 0Þ satisfies the following assumptions:

H.1. Jacobian matrix Df ðv; 0Þ has two complex conjugate pairs of eigenvalues l1;2ðvcÞ and l3;4ðvcÞ on the unit
circle, i.e., l2ðvcÞ ¼ l̄1ðvcÞ and l1;2ðvcÞ

�� �� ¼ 1; l4ðvcÞ ¼ l̄3ðvcÞand l3;4ðvcÞ
�� �� ¼ 1.

H.2. the remainder of the spectrum of Df ðv; 0Þ are strictly inside the unit circle.
For all v in some neighborhood of vc, the map DX 0 ¼ f ðv;DX Þ, under the change of variables m1 ¼ v1 � v1c,

m2 ¼ v2 � v2c, m ¼ ðm1;m2Þ
T and DX ¼ P ~Y , becomes

~Y 0 ¼ ~F ðm; ~Y Þ, (7)

where P is the eigenmatrix [23, 50].
Let z1 ¼ y1 þ iy2, z2 ¼ z̄1, z3 ¼ y3 þ iy4, z4 ¼ z̄3, z ¼ ðz1; z2; z3; z4Þ

T, Gð1Þ ¼ ~F1 þ i ~F2 � l1z1,
Gð2Þ ¼ ~F3 þ i ~F4 � l3z3, W ¼ ðy5; y6; . . . ; y2nÞ

T, H ¼ ð ~F 5; ~F 6; � � � ; ~F 2nÞ
T
�D1W , map (7) may be expressed by

z01 ¼ l1z1 þ Gð1Þðz1; z̄1; z3; z̄3;W ; mÞ; z03 ¼ l3z3 þ Gð2Þðz1; z̄1; z3; z̄3;W ; mÞ

W 0 ¼ D1W þHðz1; z̄1; z3; z̄3;W ; mÞ ð8Þ

in which li ¼
~liðmÞ ¼ liðvc þ mÞ, ~l1;2ð0Þ ¼ a1 � i$1, ~l3;4ð0Þ ¼ a2 � i$2, ~l1;2ð0Þ

�� �� ¼ 1, ~l3;4ð0Þ
�� �� ¼ 1. D1 is a real

matrix of degree ð2n� 4Þ � ð2n� 4Þ with the eigenvalues ~l5ðmÞ, ~l6ðmÞ; . . . ; ~l2nðmÞ.
Using the center manifold theorem technique and normal form method of maps, we can reduce map (8) to

the normal form map Fðz; �Þ, which is given by

z01 ¼
~l1ð0Þz1 þ ~�1z1 þ ~az21z̄1 þ

~bz1z3z̄3 þOðð z1j j þ z3j jÞ
5
Þ,

z03 ¼
~l3ð0Þz3 þ ~�3z3 þ ~f z23z̄3 þ ~ez1z̄1z3 þOðð z1j j þ z3j jÞ

5
Þ. (9)
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The normal form map (9), in the real form FðY ; �Þ, is expressed by

y01 ¼ a1y1 �$1y2 þ �1y1 � �2y2 þ ðay1 � cy2Þðy
2
1 þ y2

2Þ þ ðby1 � dy2Þðy
2
3 þ y2

4Þ þ h:o:t,

y02 ¼ a1y2 þ$1y1 þ �1y2 þ �2y1 þ ðay2 þ cy1Þðy
2
1 þ y2

2Þ þ ðby2 þ dy1Þðy
2
3 þ y2

4Þ þ h:o:t,

y03 ¼ a2y3 �$2y4 þ �3y3 � �4y4 þ ðfy3 � hy4Þðy
2
3 þ y2

4Þ þ ðey3 � gy4Þðy
2
1 þ y2

2Þ þ h:o:t,

y04 ¼ a2y4 þ$2y3 þ �3y4 þ �4y3 þ ðfy4 þ hy3Þðy
2
3 þ y2

4Þ þ ðey4 þ gy3Þðy
2
1 þ y2

2Þ þ h:o:t ð10Þ

in which, � ¼ ð�1; �2; �3; �4Þ
T, �i ¼ �iðmÞ, �ið0Þ ¼ 0,i ¼ 1; 2; 3; 4.

The linearized map of FðY ; �Þ at the fixed point is now

A ¼
qFðY ; �Þ

qY

����
ð0;=�Þ

¼

a1 þ �1 �ð$1 þ �2Þ 0 0

$1 þ �2 a1 þ �1 0 0

0 0 a2 þ �3 �ð$2 þ �4Þ

0 0 $2 þ �4 a2 þ �3

2
6664

3
7775. (11)

Ignoring the terms of high order of e, the bifurcation boundary is given by a1�1 þ$1�2 ¼ 0 and
a2�3 þ$2�4 ¼ 0. If a1�1 þ$1�2o0, a2�3 þ$2�4o0, the fixed point Y 0 ¼ ð0; 0; 0; 0Þ

T is stable, otherwise it is
unstable. On the boundary line a1�1 þ$1�2 ¼ 0 or a2�3 þ$2�4 ¼ 0, Neimark–Sacker bifurcation associated
with the fixed point occurs. The direction of Neimark–Sacker bifurcation (supercritical or subcritical) depends
on the high-order terms of FðY ; �Þ.

Let �i ¼ hi1m1 þ hi2m2 þOð m1
�� ��þ m2

�� ��Þ2, i ¼ 1; 2; 3; 4. Ignoring the terms of high order of e, the bifurcation
boundary becomes

ða1h11 þ$1h21Þm1 þ ða1h12 þ$1h22Þm2 ¼ 0; ða2h31 þ$2h41Þm1 þ ða2h32 þ$2h42Þm2 ¼ 0. (12)
5. Local codimension two bifurcations of the normal form map

5.1. The classification of unfoldings cases

A full understanding of the normal form map (10) requires more than Jacobian matrix (11). So it is
necessary to change the normal form map (10) to the polar coordinate form Fðr; y; �0Þ 2 R2 � S2,
ðr1; r2; y1; y2Þ ! ðr01; r

0
2; y
0
1; y
0
2Þ.

Let ~�1 ¼ ~l1ð0Þ~�10, ~�3 ¼ ~l3ð0Þ~�30, ~a ¼ ~l1ð0Þ ~a0, ~b ¼ ~l1ð0Þ ~b0, ~e ¼ ~l3ð0Þ~e0 and ~f ¼ ~l3ð0Þ ~f 0, the normal form map
(9) becomes

z01 ¼
~l1ð0Þz1ð1þ ~�10 þ ~a0z1z̄1 þ ~b0z3z̄3Þ þOððjz1j þ jz3jÞ

5
Þ,

z03 ¼
~l3ð0Þz3ð1þ ~�30 þ ~e0z1z̄1 þ ~f 0z3z̄3Þ þOððjz1j þ jz3jÞ

5
Þ. ð13Þ

In polar coordinates, the map Fðz; �0Þ 2 R4 is changed to Fðr; y; �0Þ 2 R2 � S2, which is given by

r01 ¼ r1ð1þ �10 þ a0r21 þ b0r
2
3Þ þ h:o:t; r03 ¼ r3ð1þ �30 þ e0r21 þ f 0r23Þ þ h:o:t,

y01 ¼ y1 þ aþ �20 þ c0r
2
1 þ d0r

2
3 þ h:o:t; y03 ¼ y3 þ bþ �40 þ g0r

2
1 þ h0r23 þ h:o:t. ð14Þ

in which, �10 ¼ �1a1 þ �2$1, �20 ¼ �2a1 � �1$1,�30 ¼ �3a2 þ �4$2 and �40 ¼ �4a2 � �3$2 are the unfolding
parameters, and �0 ¼ ð�10; �30Þ

T; a0 ¼ aa1 þ c$1, c0 ¼ ca1 � a$1, b0 ¼ ba1 þ d$1, d0 ¼ da1 � b$1,
e0 ¼ ea2 þ g$2, g0 ¼ ga2 � e$2, f 0 ¼ f a2 þ h$2, h0 ¼ ha2 � f$2.

We can deduce much of the behavior of this system by ignoring the azimuthal components. In this way,
a two-dimensional map is obtained, which is now

r01 ¼ r1ð1þ �10 þ a0r
2
1 þ b0r23Þ þ h:o:t; r03 ¼ r3ð1þ �30 þ e0r

2
1 þ f 0r

2
3Þ þ h:o:t. (15)
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Letting r̄1 ¼ r1
ffiffiffiffiffiffiffiffi
a0j j

p
and r̄3 ¼ r3

ffiffiffiffiffiffiffiffi
f 0

�� ��q
, we obtain the following:

r̄01 ¼ r̄1ð1þ �10 þ r̄21 þ b̄r̄23Þ þ h:o:t; r̄03 ¼ r̄3ð1þ �30 þ c̄r̄21 þ d̄ r̄23Þ þ h:o:t, (16)

where b̄ ¼ b0=jf 0j, c̄ ¼ e0=ja0j and d̄ ¼ �1.
For convenience in the following, we drop the bar of these symbols b̄, c̄ and d̄, and use still b, c and d instead

of b̄, c̄ and d̄, respectively.
Map (16) can be represented for all sufficiently small k�0k in the form

R̄7!j1
�0
ðR̄Þ þOðkR̄k4Þ,

where R̄ ¼ ðr̄1; r̄2Þ
T, jt

�0
is the flow of a planar system, that is smoothly equivalent to the system [45,46]

_r1 ¼ r1ð�10 þ r21 þ br23Þ þ h:o:t; _r3 ¼ r3ð�30 þ cr21 þ dr23Þ þ h:o:t. (17)

Now consider bifurcations and parameter unfoldings of the approximating system (17). The 3-jet of (17)
with �10 ¼ �30 ¼ 0 is determined (with respect to suitably symmetric higher-order perturbations). Provided that
a0, b0, e0, f0 are not equal to zero and a0 f0�b0e0 6¼0 implying that d � bca0 in Eq. (17). Nine topologically
distinct equivalence classes are shown in Fig. 2 and Table 1. It is to be noted that 2c and 2e, 2d and 2f,
respectively, are topologically equivalent if we allow reversal of time and reflection about the diagonal in
invariant line.

In particular, we note that invariant radial lines r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞðd � bÞ

p
r1 exist whenever ð1� cÞðd � bÞ40,

but we do not distinguish between phase portraits which are equivalent up to reversal of time. In Fig. 2, only
the positive ðr1;r3Þ quadrant is shown. Since the phase portraits are symmetric under reflection about both
axes. Fig. 2 should be read in conjunction with Table 1.
Fig. 2. Nine phase portraits for the degenerate vector field.
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Table 1

The nine degenerate fixed points

Type 1: two invariant lines:ð1� cÞðd � bÞo0

1a: d ¼ þ1, all appropriate b, c

1b: d ¼ �1, c404b, �1� bc40

1c: d ¼ �1, all other b, c

Type 2: three invariant lines:ð1� cÞðd � bÞ40

2a: d ¼ þ1, ð1� bcÞð1� bÞ40, all appropriate b, c

2b: d ¼ þ1, ð1� bcÞð1� bÞo0, all appropriate b, c

2c: d ¼ �1, ð�1� bcÞð�1� bÞ40, bo� 1, co1

2d: d ¼ �1, ð�1� bcÞð�1� bÞo0, bo� 1, c41

2e: d ¼ �1, ð�1� bcÞð�1� bÞo0, b4� 1, co1

2f: d ¼ �1, ð�1� bcÞð�1� bÞ40, b4� 1, co1

Table 2

The 12 unfoldings

Case 1(a) 1(b) 2 3 4(a) 4(b) 5 6(a) 6(b) 7(a) 7(b) 8

d +1 +1 +1 +1 +1 +1 �1 �1 �1 �1 �1 �1

b + + + � � � + + + � � �

c + + � + � � + � � + + �

d�bc + � + + + � � + � + � �

G.W. Luo et al. / Journal of Sound and Vibration 298 (2006) 154–179160
The classification of degenerate fixed points given above is not the most natural when it comes to studying
the unfoldings. Here there are 12 distinct cases. As set out in Table 2.

The present classification is based on a study of secondary pitchfork bifurcations from nontrivial equilibria
for the planar vector field. We note that Y �0 ¼ ð0; 0Þ

T is always an equilibrium and that up to three other
equilibria (in the positive quadrant) can appear. As follows:

Y �1 ¼ ð
ffiffiffiffiffiffiffiffiffiffi
��10
p

; 0ÞT; for �10o0; Y �2 ¼ ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��30=d

p
Þ
T for �30=do0,

Y �3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�30 � d�10

d � bc

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�10 � �30

d � bc

r !T

for
b�30 � d�10

d � bc
40;

c�10 � �30
d � bc

40. ð18Þ

Pitchfork bifurcation occurs from Y �0 ¼ ð0; 0Þ
T on the lines �10 ¼ 0 and �30 ¼ 0, and also Pitchfork

bifurcation occurs from Y �1 ¼ ð
ffiffiffiffiffiffiffiffiffiffi
��10
p

; 0ÞT on the line �30 ¼ c�10, and from Y �2 ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��30=d

p� �T
on the line

�30 ¼ d�10=b. The stability types of these bifurcations are determined by Jacobian matrix associated with
corresponding fixed point.

The behavior remains relatively simple as long as Hopf bifurcations do not occur from the fixed point

Y �3 ¼ ðr1;r3Þ
T
¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�30 � d�10Þ=ðd � bcÞ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc�10 � �30Þ=ðd � bcÞ

p
Þ
T. To detect such bifurcations, we linearize

at this fixed point to obtain the matrix

A ¼
�10 þ 3r̄21 þ br̄23 2br̄1r̄3

2cr̄1r̄3 �30 þ cr̄21 þ 3dr̄23

" #
. (19)

Hopf bifurcations of this fixed point can occur only on the line

�30 ¼
�10dð1� cÞ

b� d
, (20)

when d � bc40, we immediately see that Hopf bifurcation cannot occur in cases 1(b), 4(b), 5, 6(b), 7(b) and 8.
It is also easy to show that they cannot occur in cases 1(a), 2, 3 and 4(a), since for such bifurcations to occur,
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the slope dð1� cÞ=ðb� dÞ of the line given by (20) must lie between the slopes of the pitchfork lines

Ls1 : �30 ¼ c�10 and Ls2 : �30 ¼
d�10

b
,

and in the appropriate sector of the ð�10; �30Þ plane. In each of these four cases, simple computations reveal
that this requirement contradicts the condition d � bc40. Therefore Hopf bifurcation can occur only in
cases 6(a), 7(a).

5.2. The bifurcation sets and phase portraits for the unfoldings for cases 1, 2, 3, 4, 5, 6(b), 7(b), and 8

Y �0 ¼ ð0; 0Þ
Tis trivial equilibrium, the condition for local stability is �10o0 and �30o0. The condition for

existence of Y �1 ¼
ffiffiffiffiffiffiffiffiffiffi
��10
p

; 0
� �T

is �10o0, the condition for local stability is �1040, �30oc�10. The condition for

existence of Y �2 ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��30=d

p� �T
is �30=do0, the condition for local stability is �3040, �10ob�30=d.

Accordingly we have the following unfoldings, the bounds of the region shown in Figs. 3–7 in following ten
cases can mostly be listed as follows:

Ls1 : �30 ¼ c�10 and Ls2 : �30 ¼
d�10

b
.

5.3. The bifurcation sets and phase portraits for the unfoldings for cases 6(a) and 7(a)

The condition for existence of Y �3 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�30 � d�10Þ=ðd � bcÞ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc�10 � �30Þ=ðd � bcÞ

p
Þ
T is ðb�30 �

d�10Þ=ðd � bcÞ40 and c�10 � �30=d � bc40, the condition for local stability is determined by the analysis in
the eigenvalues of relevant Jacobian matrix (19). Hopf bifurcations associated the fixed point can occur only
on the line

�30 ¼
�10dð1� cÞ

b� d
.

Fig. 3. The unfoldings for cases 1(a) and (b) (cf. degenerate types 1a, 2a).
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Fig. 4. The unfoldings for cases 2 and 3 (cf. degenerate types 1a, 2a).

Fig. 5. The unfoldings for cases 4(a) and (b) (cf. degenerate types 1a, 2a, and 2b, respectively).
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5.3.1. The bifurcation sets and phase portraits for the unfolding for case 6(a)

For the case d ¼ �1, b40, co0, d � bco0, the local stable conditions of the equilibrium Y �3 is �10o0,
�304d�1=b, �30o�10dð1� cÞ=ðb� dÞ. The partial bifurcation set and phase portraits for unfolding associated
the case are shown in Fig. 8. The bounds of all regions shown in Fig. 8 can be listed as follows:

L1 : �30 ¼ 0; �10o0; L2 : �30 ¼
d

b
�10; �10o0; L3 : �30 ¼

�10dð1� cÞ

b� d

�10o0; L4 : �30 ¼ c�10; �10o0; L5 : �10 ¼ 0; �30o0.
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Fig. 6. The unfoldings for cases 5 and 6(b) (cf. degenerate type 1c).

Fig. 7. The unfoldings for cases 7(b) and 8 (cf. degenerate type 1c).
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Now consider the case 6(a), in which a Hopf bifurcation can occur. For this case, we obtain the partial
bifurcation set and phase portraits of Fig. 8. On the Hopf bifurcation line given by formula (20) we find that
the system

_r1 ¼ r1ð�10 þ r21 þ br23Þ þ h:o:t; _r3 ¼ r3 �10
c� 1

bþ 1

� �
þ cr21 � r23

� �
þ h:o:t, (21)
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Fig. 8. Partial bifurcation set and phase portraits for the unfolding of case 6(a).

Fig. 9. Level curves of F ðr1;r2Þ for case 6(a) (b40, c40).
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is integrable, and that the function

F ðr1; r3Þ ¼ ra1r
b
3ð�10 þ ðr

2
1 þ Zr23ÞÞ; _r3 ¼ r3 �10

c� 1

bþ 1

� �
þ cr21 � r23

� �
þ h:o:t, (22)

where a ¼ 2ð1� cÞ=A, b ¼ 2ð1þ bÞ=A, and Z ¼ ð1þ bÞ=ð1� cÞ, is constant along solution curves. In case 6(a),

b404c, A ¼ �1� bc40 and m1 ¼
Def
�go0, and the level curves of this function take the form shown in Fig. 9.

Once more it is necessary to add higher-order terms to ‘‘stabilize’’ the degenerate Hopf bifurcation and to
determine the topological type of this unfoldings. In the case the terms are homogeneous of fifth order:

r1ðēr
4
1 þ f̄ r21r

2
3 þ ḡr43Þ; r3ðhr

4
1 þ jr21r

2
3 þ kr43Þ. (23)
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Adding these quintic terms to the original Eq. (17) with d ¼ �1, using the transformations

r1 ¼
ffiffi
�
p

u; r3 ¼
ffiffi
�
p

u; �10 ¼ �u1; �30 ¼ �u1
c� 1

bþ 1

� �
þ �2u2 (24)

and rescaling time t! �t, we obtain

_u ¼ uðu1 þ u2 þ bu2Þ þ �uðēu4 þ f̄ u2u2 þ ḡu4Þ,

_u ¼ u u1
c� 1

bþ 1

� �
þ cu2 � u2

� �
þ �uðu2 þ hu4 þ ju2u2 þ ku4Þ. ð25Þ

We again have to study a small perturbation of an integrable system. Multiplying (25) by the integrating
factor ua�1ub�1, we obtain the ‘‘equivalent’’ perturbed Hamiltonian system:

_u ¼ uaub�1½ðu1 þ u2 þ bu2Þ þ �ðēu4 þ f̄ u2u2 þ ḡu4Þ�,

_u ¼ ua�1ub u1
c� 1

bþ 1

� �
þ cu2 � u2

� �
þ �ðu2 þ hu4 þ ju2u2 þ ku4Þ

� 	
. ð26Þ

The Hamiltonian function for (26) is

F ðu; uÞ ¼
1

b
uaub u1 þ u2 þ

1þ b

1� c

� �
u2

� �� �
, (27)

where a ¼ 2ð1� cÞ=A, b ¼ 2ð1þ bÞ=A, A ¼ �1� bc40.
In studying case 6(a), we can set u1 ¼ �1 without loss of generality.
Denoting such a curve F ðu; uÞ ¼ K by Gk. We require that the functionZZ

intGk

fbu2 þ ½ðaþ 4Þēþ bh�u4 þ ½ðaþ 2Þf̄ þ ðbþ 2Þj�u2u2 þ ½aḡþ ðbþ 4Þk�v4gua�1ub�1 dudu (28)

has simple zeros with respect to variation of the parameter v2 and the coefficients ē, f̄ , ḡ, h, j, k, Writing the
four integrals of (28) as Ij(K), we therefore require

u2 ¼ �
1

bI1ðKÞ
½BI2ðKÞ þ CI3ðKÞ þDI4ðKÞ�, (29)

where B ¼ ðaþ 4Þeþ bh, C ¼ ðaþ 2Þf þ ðbþ 2Þj and D ¼ agþ ðbþ 4Þk.
On the homoclinic loop we have F ¼ 0 and can thus use the substitution

u2 þ
1þ b

1� c

� �
u2 ¼ 1.

Letting ð1� cÞ=ð1þ bÞ ¼M, u2 ¼Mð1� u2Þ, we obtain

u2 ¼ �
1

bI1ð0Þ
½BI2ð0Þ þ CI3ð0Þ þDI4ð0Þ�,

where I1ð0Þ ¼ ðM
b=2=bÞ

R 1
0 ua�1ð1� u2Þ

b=2 du, I2ð0Þ ¼ ðM
b=2=bÞ

R 1
0 uaþ3ð1� u2Þ

b=2 du, I3ð0Þ ¼ ðM
ðbþ2Þ=2=ðbþ

2ÞÞ
R 1
0 uaþ1ð1� u2Þ

ðbþ2Þ=2 du, I4ð0Þ ¼ ðM
ðbþ4Þ=2=bþ 4ÞÞ

R 1
0 ua�1ð1� u2Þ

ðbþ4Þ=2 du.
We therefore have the bifurcation set

�30 ¼
c� 1

bþ 1
�10 �

�210
bI1ð0Þ

½BI2ð0Þ þ CI3ð0Þ þDI4ð0Þ�. (30)

On the basis of the discussion above, in Fig. 10 we sketch two possible completions of the unfolding of case
6(a) (for M40). The vector fields in the remaining sectors are as in Fig. 8. In Fig. 10(b) two bifurcation curves
exist on which periodic orbits coalesce in saddle-node bifurcation.
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Fig. 10. Possible completions of the unfolding of case 6(a) (The two coalescences of periodic orbits).
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5.3.2. The bifurcation sets and phase portraits for the unfolding for case 7(a)

The remaining case, 7a is even more complicated than the one we have just outlined, since it really contains
three distinct subcases, depending upon the relative sizes of the coefficients b and c. These determine whether
the Hopf bifurcation line lies in the first, third, or fourth quadrants. The three cases are shown in Fig. 11, and
represent unfoldings of the degenerate types 2e, 1b, and 2c (see Table 1), respectively. The first integral
F ðr1;r3Þ of (16) is invariant on solution curves in all these cases when

�30 ¼ �10
c� 1

bþ 1

� �
(i.e., on the Hopf bifurcation line). However, we note that in these cases at least one of the indices a, b is
always negative and thus that the integral is singular at ðr̄1; r̄3Þ ¼ ð0; 0Þ. This fact leads to the bunching of level
curves consistent with the existence of a sink or a source at ð0; 0Þ.

According to the unfoldings for cases list in Table 2, the bifurcation sets of approximating system (18), near
�0 ¼ ð0; 0Þ

T, can approximately be illustrated by Figs. 3–11 [45,46]. Recall now that the map j1
�0
ðR̄Þ

approximates the simplified map (17), and consider the influence of azimuthal components to the map (17).
We can now interpret the obtained results, first in terms of the approximating map j1

�0
ðR̄Þ, and second in terms

of the normal form map. For the normal form map FðZ; �Þ, the equilibrium Y �0 ¼ ð0; 0Þ
Tof approximating

system (18) become the trivial fixed point placed at the origin; the pitchfork bifurcation of equilibrium
Y �0 ¼ ð0; 0Þ

T turn into the Neimark–Sacker bifurcations of the fixed point Y 0 of the normal form map, note
that the direction of Neimark–Sacker bifurcation (supercritical or subcritical) depends on the high order terms
of the normal form map, since the equilibria Y �1 ¼ ð

ffiffiffiffiffiffiffiffiffiffi
��10
p

; 0ÞT (or Y �2 ¼ ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��30=d

p
Þ
T) become closed

invariant curves of corresponding stability. In the discussion above, we have found that at least one of two
Neimark–Sacker bifurcations associated with the trivial fixed point on lines �10 ¼ 0 ða1�1 þ$1�2 ¼ 0Þ and
�30 ¼ 0 ða2�3 þ$2�4 ¼ 0Þ is subcritical for the normal form map, and that supercritical Neimark–Sacker
bifurcation associated the trivial fixed point occurs only in cases 5–8. The Pitchfork bifurcation of the
equilibrium Y �2 ¼ ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��30=d

p
Þ
T (or Y �1 ¼ ð

ffiffiffiffiffiffiffiffiffiffi
��10
p

; 0ÞT) in cases 6 and 7 corresponds to instability and torus
bifurcation of closed invariant curve of the map, and Hopf bifurcation of the equilibrium Y �3 in cases 6(a) and
7(a) corresponds to the further torus bifurcation of the normal form map, both lead to the ‘‘tire-like’’ quasi-
periodic attractor. It is to be noted that only in cases 6(a) and 7(a) the attracting quasi-periodic orbits of ‘‘tire-
like’’ are generated.

According to the center manifold theory, local behavior of map ~f ðv;X Þ, near the point vc of double
Neimark–Sacker bifurcation, is equivalent to that of the normal form FðZ; �Þ for e in some neighborhood of



ARTICLE IN PRESS

Fig. 11. Three subcases for case 7(a) (cf. degenerate cases associated with types 2e, 1b, and 2c, respectively): (a) b421, c41; (b) b421,

co1 or bo21, c41; (c) bo21, co1.
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a critical value � ¼ ð0; 0; 0; 0ÞT. By comparison with of local bifurcation behavior of the simplified map (17), we
can find out dynamical behavior of the vibro-impact system in the case of double Neimark–Sacker bifurcation.
By virtue of Figs. 8, 10 and 11, we can conclude that the vibro-impact system, near the value of double
Neimark–Sacker bifurcation, undergoes not only Neimark–Sacker bifurcation associated with period-one
double-impact symmetrical motion, but also does possibly torus bifurcation. The torus bifurcation leads to
‘‘tire-like’’ quasi-periodic attractor in Poincaré section. This conclusion conforms to the examples under-
mentioned.

6. Numerical analyses

The local stability analysis, discussed in the previous section, can reveal different kinds of bifurcations of
1-1-1 symmetrical motions namely Neimark–Sacker bifurcation, codimension two bifurcation and torus
bifurcation, etc. In this section, the analysis developed in the former section is verified by the presentation of
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results for the three-degree-of-freedom vibratory system shown in Fig. 12. The existence and stability of
period-one double-impact symmetrical motion are analyzed explicitly. Also, local bifurcations at the points of
change in stability, discussed in the previous section, are considered, thus giving some information on
dynamical behavior near the point of double Neimark–Sacker bifurcation.

The system with parameters (1): m2 ¼ 0:8, m3 ¼ 1:2, k2 ¼ 1:5, k3 ¼ 1:5, f 10 ¼ 0, f 20 ¼ 1, f 30 ¼ 0, d ¼ 0:3
and R ¼ 0:8 has been chosen for analyzing its dynamical behavior near the point of double Neimark–Sacker
bifurcation. The forcing frequency o and parameter g are taken as the control parameters, i.e. v ¼ ðg;oÞT. The
eigenvalues of Jacobian matrix Df ðv; 0Þ are computed with o 2 ½3:1; 3:195� and g 2 ½0:058; 0:065�. The moduli
of all eigenvalues of Df ðv; 0Þ are less than one for v ¼ (0.065, 3.195)T. By gradually decreasing g and o from
the point v ¼ (0.065, 3.195)T to change the control parameter v, we can obtain two complex conjugate pairs of
eigenvalues l1;2ðvcÞ ¼ 20:5491035� 0:8357545i (jl1;2ðvcÞj ¼ 1:0) and l3;4ðvcÞ ¼ 20:9890127� 0:1478241i

(jl3;4ðvcÞj ¼ 0:999999) which are very close to the unit circle, and the other eigenvalues
(l5;6ðvcÞ ¼ 20:2564126� 0:1354285i, jl5;6ðvcÞj ¼ 0:2899798) still stay inside the unit circle as v equals
vc ¼ (0.060153, 3.162899)T. The eigenvalues l1;2ðvÞ and l3;4ðvÞ have escaped the unit circle as g and o pass
through decreasingly v ¼ (0.060151, 3.1628988)T. The eigenvalues l1;2ðvÞ and l3;4ðvÞ almost escape the unit
circle simultaneously, so vc ¼(0.060153, 3.162899)T is approximately taken as the value of double
Neimark–Sacker bifurcation. Using the center manifold theorem technique and normal form method of
maps, we can reduce map (5) to the normal form map (10), and correspondingly obtain the analytical
expression of the bifurcation parameters transformed �i ¼ hi1m1 þ hi2m2 þOðjm1j þ jm2jÞ

2. For the system
Fig. 13. The partial bifurcation set near the point of double Neimark–Sacker bifurcation.

P3 sin(�T +�) P1 sin(�T +�) P1 sin(�T +�)
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Fig. 12. Schematic of the vibratory system with symmetrical rigid stops.
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shown in Fig. 12, with system parameters (1), the coefficients of the formula �i ¼ hi1m1 þ hi2m2 þOðjm1j þ
jm2jÞ

2 are

h11 ¼ 3:864573; h12 ¼ �1:135826; h21 ¼ �5:729431; h22 ¼ �1:627221,

h31 ¼ 1:083245; h32 ¼ �1:146872; h41 ¼ �2:008334; h42 ¼ �6:423976.

By formula (12), two lines m2 ¼ 7:409717m1 and m2 ¼ 29:385739m1, associated with Neimark–Sacker
bifurcation of period-one double-impact symmetrical motion, can be determined. We can see that these two
lines are very close to the lines L1 and L2 which are obtained by numerical computation and shown in Fig. 13.
The lines L1 and L2 are obtained by computing the eigenvalues of Jacobian matrix(6) associated with the fixed
points in the region of 1-1-1(S). On the lines L1 and L2 a complex conjugate pair of eigenvalues of Jacobian
matrix(6) lie on the unit circle, the remainder of the spectrum still stay inside the unit circle. Approximate
points of torus bifurcations can be obtained by computing the points of change in stability of attracting
invariant circles, and the line L3 is fitted by these points.

Local behavior of the three-degree-of-freedom vibratory system with symmetrical stops, near the point of
double Neimark–Sacker bifurcation, is obtained by numerical simulation. The partial bifurcation set near the
critical value is plotted in Fig. 13, in which 1-1-1 symmetrical motion is represented by (S), and the symbol
‘‘Hopf Bif’’ represents Hopf Bifurcation of fixed point of 1-1-1 symmetrical motion, i.e., Neimark–Sacker
bifurcation. On the line L1 of Fig. 13 subcritical Neimark–Sacker bifurcation associated with period-one
double-impact symmetrical motion occurs, and on the line L2 supcritical Neimark–Sacker bifurcation of the
motion occurs. On the line L3 torus bifurcation occurs, which means that the quasi-periodic attractor,
represented by the close circle, becomes quasi-attracting so that a new ‘‘tire-like’’ quasi-periodic attractor is
possibly born near the line L3. As g is fixed, the 1-1-1 symmetrical motion will undergo supcritical
Neimark–Sacker bifurcation, with decrease in the forcing frequency o, so that the quasi-periodic impact orbit
is generated, which is represented by an attracting and closed invariant circle in projected Poincaré section.
With further decrease in the forcing frequency o, instability of the closed circle occurs so that a new quasi-
periodic impact motion is possibly born near the value of torus bifurcation, which is represented by ‘‘tire-like’’
quasi-periodic attractor in the projected Poincaré section. Whereas the 1-1-1 symmetrical motion undergoes
also subcritical Neimark–Sacker bifurcation with increase in the forcing frequency o. Dynamical behavior of
the system, near the point of double Neimark–Sacker bifurcation, are further illustrated by bifurcation
diagrams, phase plane portrait, time trajectory and projected Poincaré sections plotted in Figs. 14–16.
Fig. 14. Bifurcation diagrams near the point of double Neimark–Sacker bifurcation. (a) g ¼ 0:061, o 2 ½3:07; 3:19� (a1) g ¼ 0:061,
o 2 ½3:13; 3:16�, (b) g ¼ 0:065, o 2 ½3:04; 3:22� (b1) g ¼ 0:065, o 2 ½3:04; 3:13�.
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Fig. 15. Projected Poincaré sections: (a) transient points as well as the attracting invariant circle associated with 1-1-1 symmetrical motion,

starting from the initial condition near the fixed point of 1-1-1 symmetrical motion, o ¼ 3:15, g ¼ 0:061; (b) ‘‘tire-like’’ quasi-periodic
attractor, o ¼ 3:146, g ¼ 0:061; (c) ‘‘tire-like’’ quasi-periodic attractor, o ¼ 3:12, g ¼ 0:061; (d) ‘‘tire-like’’ attractor, o ¼ 3:11, g ¼ 0:061;
(e) ‘‘tire-like’’ tori doubling, o ¼ 3:086, g ¼ 0:061; (f) chaos, o ¼ 3:08, g ¼ 0:061.

Fig. 16. Projected Poincaré section (a), phase plane portrait (b) and time trajectory (c): (a) transient points as well as the fixed points

associated with 2-2-2 motion, starting from the initial condition near the fixed point (unstable focus) of 1-1-1 symmetrical motion,

o ¼ 3:175, g ¼ 0:061; (b) 2-2-2 motion, o ¼ 3:175, g ¼ 0:061; (c) 2-2-2 motion, o ¼ 3:175, g ¼ 0:061.
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The fixed point associated with 1-1-1 symmetrical motion, with the corresponding parameter v, is taken as the
initial map point in every numerical analysis. We choose g ¼ 0:061 and change the forcing frequency o in
numerical analyses. The results from simulation show that the system exhibits stable 1-1-1 symmetrical motion
in the forcing frequency range o 2 ð3:154923; 3:168377Þ.

Instability of 1-1-1 symmetrical motion occurs, and supercritical Neimark–Sacker bifurcation associtated
with the motion is generated as o is decreased gradually and passes through oc1 ¼ 3:154923. The system
begins to exhibit the quasi-periodic impact motion, which is represented by an attracting and closed invariant
circle in projected Poincaré section; see Fig. 15(a). With decrease in the forcing frequency o, instability of the
closed circle occurs so that a new quasi-periodic impact motion is born near the value of torus bifurcation,
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which is represented by ‘‘tire-like’’ quasi-periodic attractor in the projected Poincaré section; see Figs. 15(b)
and (c). As the forcing frequency is further decreased, the system finally falls into apparent chaotic motion via
‘‘tire-like’’ tori doubling, see Figs. 15(e) and (f).

Increase in the forcing frequency leads to instability and subcritical Neimark–Sacker bifurcation of 1-1-1
symmetrical motion. At the critical value oc2 ¼ 3:168377, the eigenvalues of Jacobian matrix Df ðo;X �Þ are
given as follows:

l1;2ðoc2Þ ¼ �0:5429462� 0:8336944i;

jl1;2ðoc2Þj ¼ 0:9949055,

l3;4ðoc2Þ ¼ �0:9889936� 0:1479582i,

jl3;4ðoc2Þj ¼ 1:0000001,

l5;6ðoc2Þ ¼ �0:2560790� 0:1331653i; l5;6ðoc2Þ
�� �� ¼ 0:2886338.

It is found, by numerical simulation, that subcritical Neimark–Sacker bifurcation of 1-1-1 symmetrical
motion occurs for o43:168377, and the fixed point associated with 1-1-1 symmetrical motion varies from
stable focus to unstable focus. Fig. 16(a) shows transient points as well as the fixed points associated with 2-2-2
motion, starting from the initial condition near the fixed point (unstable focus) of 1-1-1 symmetrical motion
for o ¼ 3:175. Fig. 16(b) and (c) shows phase plane portrait and time trajectory of 2-2-2 motion for o ¼ 3:175,
respectively.

We have found, by analytical analyses and numerical simulation, that the vibro-impact systems with more
than two degrees of freedom more easily work near the point of codimension two bifurcation than two-degree-
of-freedom vibro-impact systems do. The increase in the number of equations correspondingly increases the
number of eigenvalues of maps, which makes it possible that more eigenvalues lie near the unit circle of
complex plane. An example is given in the following test. The system with parameters (2): m2 ¼ 3, m3 ¼ 1:2,
k2 ¼ 1:2, k3 ¼ 1:5, f 10 ¼ 0, f 20 ¼ 1, f 30 ¼ 0, d ¼ 0:3, R ¼ 0:7 and g ¼ 0:05 has been chosen for analysis. The
original purpose of the example is only used for analyzing dynamical behavior of the system near the point of
strong resonance(1:2, l1 ¼ l̄2, l

2
1;2 ¼ 1). However, we find that the system exhibits quasi-periodic impact

motion represented by ‘‘tire-like’’ quasi-periodic attractor. Its dynamical behavior is similar to that near the
point of double Neimark–Sacker bifurcation. Here, we consider the case of v 2 R1 and take only the forcing
frequency o as the control parameter. As o passes through oc ¼ 2:178259 in a decreasing way, a complex
conjugate pair of eigenvalues of Df ðo; 0Þ escape the unit circle from the points near the point (�1, 0), the
remainder of the spectrum of Df ðo; 0Þ stay still inside the unit circle, Neimark–Sacker or subharmonic
bifurcation associated with 1:2 strong resonance case (l21;2ðocÞ ¼ 1) may occur. At the critical value
oc ¼ 2:178259, the eigenvalues of Jacobian matrix Df ðo; 0Þ are given as follows:

l1;2ðocÞ ¼ �0:9999983� 0:00019224i; jl1;2ðocÞj ¼ 1:0000001,

l3;4ðocÞ ¼ �0:5068009� 0:7751092i; l3;4ðocÞ
�� �� ¼ 0:9260893,

l5;6ðocÞ ¼ �0:22575470� 0:19433770i; l5;6ðocÞ
�� �� ¼ 0:2978797.

The numerical results show that the system exhibits stable 1-1-1 symmetrical motion for o42:178259. As o
passes through oc ¼ 2:178259 decreasingly, instability of the symmetrical double-impact periodic motion
occurs so that the quasi-periodic impact motion, represented by the attracting invariant circle, is born; see
Fig. 17(a). Decrease in the forcing frequency o leads to that the closed circle becomes quasi-attracting, and the
‘‘tire-like’’ quasi-periodic attractor is born, see Figs. 17(b) and (c). With further decrease in the forcing
frequency o, the ‘‘tire-like’’ attractor gradually expands as seen in Figs. 17 (d) and (e) and finally ruptures, and
the system falls into apparent chaotic motion; see Fig. 17(f). Afterwards a quasi-periodic attractor, represented
by four attracting invariant circles, is born by a degeneration of chaos; see Fig. 17(g). With continuous
decrease in o, the invariant circles become quasi-attracting, and the system falls into chaotic motion again via
the quasi-attracting invariant circles as seen in Figs. 17(h) and (i). The reason why the system with parameters
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Fig. 17. Projected Poincaré sections: (a) transient points as well as the attracting invariant circle associated with 1-1-1 symmetrical motion,

starting from the initial condition near the fixed point of 1-1-1 symmetrical motion, o ¼ 2:14; (b) ‘‘tire-like’’ quasi-periodic attractor,

o ¼ 2:135; (c) ‘‘tire-like’’ quasi-periodic attractor, o ¼ 2:133; (d) ‘‘tire-like’’ quasi-periodic attractor, o ¼ 2:132; (e) ‘‘tire-like’’ attractor,
o ¼ 2:13; (f) chaos, o ¼ 2:124096; (g) quasi-periodic attractor represented by four attracting invariant circles, o ¼ 2:1175; (h) chaos,
o ¼ 2:115; (i) chaos, o ¼ 2:09.
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(2), in 1:2 strong resonance case, exhibits the ‘‘tire-like’’ quasi-periodic attractors is explained in the follow-
ing test.

Let us continue to consider the system with parameters (2). Here, the forcing frequency o and g are taken as
the control parameters, i.e. v ¼ ðg;oÞT. The eigenvalues of Df ðv; 0Þ are computed with o 2 ½2:18; 2:3� and
g 2 ½0:036; 0:05�. The moduli of all eigenvalues of Df ðv; 0Þ are less than one for v ¼ (0.05, 2.18)T. By
gradually decreasing g and increasing o from the point v ¼ (0.05, 2.18)T to change the control para-
meter v, we can obtain two complex conjugate pairs of eigenvalues l1;2ðvcÞ ¼ 20:97662440� 0:21495570i

(jl1;2ðvcÞj ¼ 1:00000000), l3;4ðvcÞ ¼ 20:6300049� 0:7765909i ( l3;4ðvcÞ
�� �� ¼ 0:9999998) which are very close to

the unit circle, and the other eigenvalues l5;6ðvcÞ ¼ 20:232266� 0:2123674i (jl5;6ðvcÞj ¼ 0:314718) still stay
inside the unit circle as v equals vc ¼ (0.0399601, 2.258997)T. The eigenvalues l1;2ðvÞ and l3;4ðvÞ have escaped
the unit circle as o and g pass through o ¼ 2:258999 (increasingly) and g ¼ 0:03996 (decreasingly). The
eigenvalues l1;2ðvÞ and l3;4ðvÞ almost escape the unit circle simultaneously, so vc ¼ (0.0399601, 2.258997)T is
approximately taken as the value of double Neimark–Sacker bifurcation.

The partial bifurcation set near the critical value is plotted in Fig. 18. On the line L1 of Fig. 18 subcritical
Neimark–Sacker bifurcation of period-one double-impact symmetrical motion occurs, and on the line L2
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Fig. 18. The partial bifurcation set near the point of double Neimark–Sacker bifurcation.

Fig. 19. Bifurcation diagrams near the point of double Neimark–Sacker bifurcation. (a) g ¼ 0:0405, o 2 ½2:23; 2:26� (a1) g ¼ 0:0405,
o 2 ½2:242; 2:257�, (b) g ¼ 0:045, o 2 ½2:13; 2:43� (b1) g ¼ 0:045, o 2 ½2:15; 2:24�.
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supcritical Neimark–Sacker bifurcation of the motion occurs. On the line L3 torus bifurcation occurs, which
means that the quasi-periodic attractor, represented by the close circle in Poincaré section, becomes quasi-
attracting so that a new ‘‘tire-like’’ quasi-periodic attractor is born near the line L3.

Some bifurcation diagrams and projected Poincaré sections are shown in Figs. 19 and 20, which illustrate
dynamical behavior of the system with parameters (2) near the point of double Neimark–Sacker bifurcation.

According to the analysis above-mentioned, we can find that the point v ¼ ð0:05; 2:178259ÞT of 1:2 strong
resonance lies just near the point v ¼ ð0:0399601; 2:258997ÞT of double Neimark–Sacker bifurcation. So the
system with parameters (2), in 1:2 strong resonance case, also exhibits the quasi-periodic impact motion
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Fig. 20. Projected Poincaré sections: (a) the attracting invariant circle associated with 1-1-1 symmetrical motion; o ¼ 2:252; (b) ‘‘tire-like’’
attractor, o ¼ 2:25; (c) ‘‘tire-like’’ torus doubling, o ¼ 2:244.
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represented by ‘‘tire-like’’ quasi-periodic attractor. The quasi-periodic impact behavior is rich and complex.
This means that two or more complex conjugate pairs of eigenvalues of maps, lying near the unit circle,
possibly lead to the ‘‘tire-like’’ attractor.

By studying codimension two Neimark–Sacker bifurcations of vibro-impact system of Fig. 12, we can find
that the system exhibit similar dynamical behavior near the points of codimension two Neimark–
Sacker bifurcations. The analyses in the section show that near the point of double Neimark–Sacker
bifurcation there exist period-one doubling-impact symmetrical motion, Neimark–Sacker bifurcation of the
motion and torus bifurcation associated with the transition of the attracting invariant circle to ‘‘tire-like’’
attractor. The torus bifurcation leads to the quasi-attracting invariant circle and ‘‘tire-like’’ attractors. The
quasi-attracting invariant circle is attracting for the map point inside the circle, and repelling for the map point
on or outside it. The ‘‘tire-like’’ attractor is of quasi-periodic impact characteristics near the point of torus
bifurcation. The dynamic behavior of the vibro-impact system shown in Figs. 13–16 (and Figs. 18–20), near
the point of double Neimark–Sacker bifurcation, corresponds with the unfolding of case 6(a) of the normal
form map which is shown in Figs. 8 and 10. Moreover, by numerical simulation we also observe the dynamic
behavior of the vibro-impact system corresponding with the unfolding of the normal form map associated
with cases 5, 6(b), 7(b) and 8. In the four cases, the dynamic behaviors of the vibro-impact system are simpler
than those shown in Figs. 13 and 18, the system exhibits only the quasi-periodic attractor represented by an
attracting and closed circle, and no stable ‘‘tire-like’’ quasi-periodic attractor occurs; one of two
Neimark–Sacker bifurcations associated with 1-1-1 symmetrical motion is supercritical, and the other is
subcritical.

7. Conclusions

An important application where the model studied here may be of use is in the dynamics of heat exchanger
tubes in nuclear reactors [51]. Such tubes are designed to have clearances at support points to allow for
thermal expansion. When fluid flows past these tubes vortex shedding occurs and the tubes are excited. The
response of such systems is very complicated [51] and the wearing of these tubes is a major problem in the
nuclear industry. Fluid flow past panels and beams can result in chaotic motions and thus bifurcation
behavior and chaotic motions may provide an appropriate tool in the study of tube wear. The other important
application where the model may also be of use is in the vibro-impact dynamics of wheelset and rail of high
speed railway coaches [26]. At low speeds the coaches will undergo nonlinear oscillations and behave as a self-
excited nonlinear system without impacts. As the speed of coaches is increased, the coaches exhibit hunting
motion and the flange of wheelset eventually begins to hit the steel rail. Some researches into symmetrical
double-impact periodic motion, stability, pitchfork bifurcation and routes to chaos were developed for the
vibratory systems with symmetrical rigid stops in Refs. [3,16].

No Neimark–Sacker bifurcation of symmetrical double-impact periodic motion occurs in a single-degree-
of-freedom system having symmetrically placed rigid stops and subjected to periodic excitation [3]. However,
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in the paper Neimark–Sacker bifurcations of 1-1-1 symmetrical motions are shown to exist in the
multidegree-of-freedom vibro-impact system with symmetrical rigid stops. As the forcing frequency is
changed, the quasi-periodic impact motion may lead to chaos via torus bifurcation and ‘‘tire-like’’ tori
doubling successively.

Double Neimark–Sacker bifurcation of the vibratory system with symmetrical rigid stops is analyzed in the
paper. Local behavior of the system, near the point of double Neimark–Sacker bifurcation, is investigated by
using qualitative analysis and numerical simulation. Near the value of double Neimark–Sacker bifurcation
there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-
periodic impact motions are represented by the closed circle and ‘‘tire-like’’ quasi-periodic attractor in
projected Poincaré sections, respectively. Complex dynamic behavior near the points of codimension two
bifurcations is observed by means of two examples in Section 6, which corresponds with the unfolding of the
simplified map in case 6(a) shown in Figs. 8 and 10. One of two Neimark–Sacker bifurcations associated with
1-1-1 symmetrical motion is supercritical, and the other is subcritical; after the supercritical Neimark–Sacker
bifurcation, torus bifurcation, associated with the transition of the attracting invariant circle to ‘‘tire-like’’
attractor, occurs with change of control parameters. Routes from ‘‘tire-like’’ quasi-periodic attractors to chaos
are stated briefly. However, it should be noted that routes from ‘‘tire-like’’ quasi-periodic attractor to chaos
have not been known well.

The strict condition of codimension two bifurcation is not easy to encounter in practical application
of engineering. However, there exist the possibilities that actual nonlinear dynamical systems, with
two varying parameters or more, work near the critical value of codimension two bifurcation due to
change of parameters. The impact-forming machinery is a typical example [52]. Besides the forcing
frequency o, the value of gap varies also with different thickness of the formed workpieces. Another
representative example is the inertial vibro-impact shaker, of which the distribution of masses is
generally metabolic with the casts with different masses, and the forcing frequency is also important
parameter changed [53]. The change of multiparameters possibly leads to the results that the vibro-impact
systems work near the critical parametres of codimension two bifurcation. It is necessary to study the
bifurcations caused by change of multiparameters to reveal dynamical behavior of nonlinear systems near the
points of bifurcations.
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Appendix A

Let C represent the canonical modal matrix of Eq. (2), oi ði ¼ 1; 2; . . . ; nÞ denote the eigenfrequiencies of
the system, Zi ¼ goi; odi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2i

p
. Using the formal coordinate and modal matrix approach, one can

obtain the general solutions of Eq. (2):

xðtÞ ¼ CxðtÞ, (A.1)

xðtÞ ¼ GðtÞA1 þHðtÞB1 þ Fs sinðotþ tÞ þ Fc cosðotþ tÞ; 0ptpt1, (A.2)

xðtÞ ¼ Gðt� t1ÞA2 þHðt� t1ÞB2 þ Fs sinðotþ tÞ þ F c cosðotþ tÞ; t1otpt1 þ t2 (A.3)

in which, it takes the time t1 and t2 for the mass Mk to move from the constraint A to Ā and from the
constraint Ā to A, respectively; A1, A2, B1 and B2 are the constant matrixes of integration,
GðtÞ ¼ diag½e�Zioi t sinðoditÞ�, HðtÞ ¼ diag½e�Zioi t cosðoditÞ�, i ¼ 1; 2; . . . ; n (The symbol ‘‘diag[ ]’’ is used to
denote the diagonal matrix); Fs ¼ ðf s1; f s2; . . . ; f snÞ

T and F c ¼ ðf c1; f c2; . . . ; f cnÞ
T are the amplitude constant

vectors.
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The determination of the period-one double-impact symmetrical motion is based on the fact that they
satisfy the following set of periodicity and matching conditions:

xð0Þ

_xð0Þ

" #
¼ �

xðp=oÞþ
_xðp=oÞþ

" #
¼ D

xð2p=oÞ

_xð2p=oÞ

" #
¼

x0

_x0

" #
;

xðp=oÞ�
_xðp=oÞ�

" #
¼ �

xð2p=oÞ

_xð2p=oÞ

" #
, (A.4)

where D ¼ diag½di�, ðdi ¼ 1; i ¼ 1; 2; . . . ; k; . . . ; nþ k � 1; nþ k þ 1; . . . ; 2n; dnþk ¼ �RÞ, x0 ¼ ðx10; x20; . . . ;
xðk�1Þ0; d;xðkþ1Þ0; . . . ;xn0Þ

T, _x0 ¼ ð _x10; _x20; . . . ; _xðk�1Þ0; _xkþ; _xðkþ1Þ0; . . . ; _xn0Þ
T: Letting t̄1 ¼ p=o, t̄2 ¼ p=o,

~giðtÞ ¼ eZioi t sinðoditÞ, ~hiðtÞ ¼ eZioi t cosðoditÞ, giðtÞ ¼ e�Zioi t sinðoditÞ, hiðtÞ ¼ e�Zioi t cosðoditÞ, one can express
1-1-1 symmetrical response by

xðtÞ ¼ CP11ðtÞC�1xð0Þ þCP12ðtÞC�1 _xð0Þ þ Ps1ðtÞ sin tþ Pc1ðtÞ cos t; 0ptpt̄1, (A.5)

xðtÞ ¼ CP21ðtÞC�1xð2p=oÞ þCP22ðtÞC�1 _xð2p=oÞ þ Ps2ðtÞ sin tþ Pc2ðtÞ cos t; t̄1otpt̄1 þ t̄2 (A.6)

in which, P11ðtÞ ¼ diag½giðtÞZioi=odi þ hiðtÞ�, P12ðtÞ ¼ diag½giðtÞ=odi�,

P21ðtÞ ¼ diag½ ~hið2p=oÞðgiðtÞZioi=odi þ hiðtÞÞ � ~gið2p=oÞðhiðtÞZioi=odi � giðtÞÞ�,

P22ðtÞ ¼ diag½ðgiðtÞ
~hið2p=oÞ � ~gið2p=oÞhiðtÞÞ=odi�,

PsiðtÞ ¼ CðFs cos ot� Fc sin otþ Pi2ðtÞoFc � Pi1ðtÞFsÞ,

PciðtÞ ¼ CðFs sin otþ Pc cos ot� Pi2ðtÞoFs � Pi1ðtÞF cÞ

Letting F ¼ diag½C;C�, and

PiðtÞ ¼
Pi1ðtÞ Pi2ðtÞ

_Pi1ðtÞ _Pi2ðtÞ

" #
; QiðtÞ ¼

PsiðtÞ PciðtÞ

_PsiðtÞ _PciðtÞ

" #
,

the response of 1-1-1 symmetrical orbit is given by

xðtÞ

_xðtÞ

" #
¼ FP1ðtÞF�1

xð0Þ

_xð0Þ

" #
þQ1ðtÞ

St

Ct

" #
; 0ptpt̄1�, (A.7)

xðtÞ

_xðtÞ

" #
¼ FP2ðtÞF�1D�1

xð0Þ

_xð0Þ

" #
þQ2ðtÞ

St

Ct

" #
; t̄1þptpt̄1 þ t̄2, (A.8)

where St ¼ sin t, Ct ¼ cos t.
Substituting formula (A.4) and inserting t ¼ 2p=o to formula (A.8), one obtains the following equation:

xð0Þ

_xð0Þ

" #
¼ D½L� FP2ð2p=oÞF�1��1Q2ð2p=oÞ

St

Ct

" #
, (A.9)

where L is a unit matrix of degree 2n� 2n. Let E ¼ D½L� FP2ð2p=oÞF�1��1Q2ð2p=oÞ, then E ¼ ½eij � is a
matrix of degree 2n� 2.

According to the periodicity and matching conditions (A.4), one obtains the kth component xk(0) from
formula (A.9), which is now

xkð0Þ ¼ d ¼ ek1 sin t0 þ ek2 cos t0. (A.10)

Solving formula (A.10) and substituting t0 into the solutions (A.7) and (A.8), we obtain the analytical
expression for period-one double-impact symmetrical orbit.

If 1-1-1 symmetrical motion is disturbed at the instant of impact by the difference DX , then one can express
the differences DX0 at the instant of the next impact. Between two consecutive impacts occurring at the stop A,
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the disturbed solutions of 1-1-1 symmetrical motion are written in the form

~xðtÞ
_~xðtÞ

" #
¼ F ~EðtÞ

~A1

~B1

" #
þ FU ~Q

~St

~Ct

" #
; 0ptp~t1�, (A.11)

~xðtÞ
_~xðtÞ

" #
¼ F ~Eðt� ~t1Þ

~A2

~B2

" #
þ FU ~Q

~St

~Ct

" #
; ~t1þptpte, (A.12)

where ~St ¼ sinðotþ t0 þ DtÞ, ~Ct ¼ cosðotþ t0 þ DtÞ, ~t1 ¼ p=oþ Dt1, ~t2 ¼ p=oþ Dt2, te ¼ ~t1 þ ~t2,

~EðtÞ ¼
GðtÞ HðtÞ

_GðtÞ _HðtÞ

" #
; ~Q ¼

F s Fc

�Fc F s

" #
; U ¼

I

oI

� 	
,

I is a unit matrix of degree n� n.
The dimensionless time is set to zero directly after an impact occurring at the constraint A, it becomes
ð2pþ DyÞ=o just before the next impact occurring at the same stop, and Dy ¼ oðDt1 þ Dt2Þ. Letting
te ¼ ð2pþ DyÞ=o, the impact boundary conditions of the disturbed motion are expressed by

~xð0Þ
_~xð0Þ

" #
¼

x0 þ Dx

_x0 þ D _x

" #
;

~xð~t1þÞ
_~xð~t1þÞ

" #
¼
�x0 þ Dx00

� _x0 þ D _x00

" #
;

~xð~t1þÞ
_~xð~t1þÞ

" #
¼ D

~xð~t1�Þ
_~xð~t1�Þ

" #
; D

~xðteÞ

_~xðteÞ

" #
¼

x0 þ Dx0

_x0 þ D _x0

" #
.

(A.13)

Inserting the boundary conditions (A.13) into the disturbed solutions (A.11) and (A.12) for t ¼ 0 and
t ¼ ~t1þ, respectively, one can solve

~A1

~B1

" #
¼ ½F ~Eð0Þ��1

x0 þ Dx

_x0 þ D _x

" #
� ½F ~Eð0Þ��1FU ~Q

~SDt

~CDt

" #
, (A.14)

~A2

~B2

" #
¼ F ~Eð0Þ

 ��1 �x0 þ Dx00

� _x0 þ D _x00

" #
� F ~Eð0Þ

 ��1

FU ~Q
~S ~t1

~C ~t1

" #
(A.15)

in which, ~SDt ¼ sinðt0 þ DtÞ, ~CDt ¼ cosðt0 þ DtÞ, ~S ~t1 ¼ sinðo~t1 þ t0 þ DtÞ, ~C ~t1 ¼ cosðo~t1 þ t0 þ DtÞ.
Substituting formula (A.15) into the disturbed solution (A.12), and then taking t ¼ ~t1, one obtains, from the

kth term of the disturbed solution (A.11), the following formula:

~xkð~t1Þ ¼ ckðGðp=oþ Dt1Þ ~A1 þHðp=oþ Dt1Þ ~B1 � Fs sinðoDt1 þ t0 þ DtÞ

� F c cosðoDt1 þ t0 þ DtÞ ¼ �d, ðA:16Þ

where ck is the kth row of the matrix C.
Letting DX ¼ ðDx1;Dx2; . . . ;Dxk�1;Dt;Dxkþ1; . . . ;Dxn;D _x1;D _x2; . . . ;D _xk�1;D _xkþ;D _xkþ1; . . . ;D _xnÞ

T
¼ ðD ~y1;

D ~y2; . . . ;D ~y2nÞ
T, one can define the function

hðDX ;Dt1Þ ¼ ~xkðp=oþ Dt1Þ þ d ¼ 0. (A.17)

Supposing ðqh=qDt1Þ
��
ð0; 0; � � � ; 0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2nþ1

a0, using the implicit function theorem and solving Eq. (A.17) for Dt1, one
obtains
Dt1 ¼ ðDx1;Dx2; . . . ;Dxk�1;Dt;Dxkþ1; . . . ;Dxn;D _x1;D _x2; . . . ;D _xk�1;D _xkþ;D _xkþ1; . . . ;D _xnÞ, (A.18)

The partial derivative of Dt1 with respect to DX can be expressed by

qDt1

qD ~yi

¼ �
qh

qD ~yi

�
qh

qDt1

� �
; i ¼ 1; 2; 3; . . . ; 2n. (A.19)
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Substituting the boundary conditions (A.13) into the disturbed solution (A.12) for t ¼ te, one can obtain

~Y 0 ¼
x0 þ Dx0

_x0 þ D _x0

" #
¼ DF ~Eðp=oþ Dt2Þ

~A2

~B2

#"
þDFU ~Q

~SDt

~CDt

#"
. (A.20)

where ~SDt ¼ sinðoDt1 þ oDt2 þ t0 þ DtÞ, ~CDt ¼ cosðoDt1 þ oDt2 þ t0 þ DtÞ.
Taking the kth term of the state vector ~Y 0, one can define the function

gðDx1;Dx2; . . . ;Dxk�1;Dt;Dxkþ1; . . . ;Dxn;D _x1;D _x2; . . . ;D _xk�1,

D _xkþ;D _xkþ1; . . . ;D _xn;Dt1;Dt2Þ ¼ ~xkðteÞ � d ¼ 0 ðA:21Þ

Supposing ðqg=qDt2Þ
��
ð0; 0; . . . ; 0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2nþ1

a0, using the implicit function theorem and solving Eq. (A.21) for Dt2, one
obtains
Dt2 ¼ Dt2ðDx1;Dx2; . . . ;Dxk�1;Dt;Dxkþ1; . . . ;Dxn;D _x1,

D _x2; . . . ;D _xk�1;D _xkþ;D _xkþ1; . . . ;D _xn;Dt1Þ. ðA:22Þ

The partial derivative of Dt2 with to DX can be expressed by

qDt2

qD ~yi

¼ �
qg

qD ~yi

þ
qg

qDt1
�
qDt1

qD ~yi

� ��
qg

qDt2

� �
; i ¼ 1; 2; . . . ; 2n. (A.23)

Inserting Dt1 and Dt2 into the state vector (A.20), one gets finally the disturbed map of period-one double-
impact symmetrical motion

X 0 ¼ ~f ðv;X Þ ¼ D1
~Y 0 þD2 (A.24)

in which, D1 ¼ diag½d
ð1Þ
i �, d

ð1Þ
i ¼ 1; i ¼ 1; . . . ; k � 1; k þ 1; � � � ; 2n, d

ð1Þ
k ¼ 0; D2 ¼ diag½d

ð2Þ
i �, d

ð2Þ
i ¼ 0; i ¼ 1; . . . ;

k � 1; k þ 1; . . . ; 2n, d
ð2Þ
k ¼ t0, t0 ¼ t0 þ oDt1 þ oDt2.
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[7] J.O. Aidanpää, B.R. Gupta, Periodic and chaotic behaviour of a threshold- limited two-degree-of-freedom system, Journal of Sound

and Vibration 165 (2) (1993) 305–327.

[8] D.J. Wagg, Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator, Chaos, Solitons and

Fractals 22 (3) (2004) 541–548.

[9] K.M. Cone, R.I. Zadoks, An numerical study of an impact oscillator with the addition of dry friction, Journal of Sound and Vibration

188 (5) (1995) 659–683.

[10] D.P. Jin, H.Y. Hu, Periodic vibro-impacts and their stability of a dual component system, Acta Mechanism Sinica 13 (4) (1997)

366–376.

[11] A.B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration 145 (2)

(1991) 279–297.

[12] G.S. Whiston, Singularities in virbo-impact dynamics, Journal of Sound and Vibration 152 (3) (1992) 427–460.

[13] S. Foale, S.R. Bishop, Dynamical complexities of forced impacting systems, Philosophical Transactions of the Royal Society of London

338 (A) (1992) 547–556.

[14] A.P. Ivanov, Bifurcation in impact systems, Chaos, Solitons and Fractal 7 (10) (1996) 1615–1634.

[15] F. Peterka, Bifurcation and transition phenomena in an impact oscillator, Chaos, Solitons and Fractals 7 (10) (1996) 1635–1647.

[16] F. Peterka, J. Vacik, Transition to chaotic motion in mechanical systems with impacts, Journal of Sound and Vibration 154 (1) (1992)

95–115.



ARTICLE IN PRESS
G.W. Luo et al. / Journal of Sound and Vibration 298 (2006) 154–179 179
[17] C. Budd, F. Dux, A. Cliffe, The effect of frequency and clearance variations on single-degree- of-freedom impact oscillators, Journal

of Sound and Vibration 184 (3) (1995) 475–502.

[18] M.I. Feigin, The increasingly complex structure of the bifurcation tree of a piecewise-smooth system, Journal of Applied Mathematics

and Mechanics 59 (6) (1995) 853–863.

[19] D. Bernardo, M.I. Feigin, S.J. Hogan, M.E. Homer, Local analysis of C-bifurcations in N-dimensional piecewise-smooth dynamical

systems, Chaos, Solitons and Fractals 10 (11) (1999) 1881–1908.

[20] D.T. Nguyen, S.T. Noah, C.F. Kettleborough, Impact behaviour of an oscillator with limiting stops, part I: a parametric study,

Journal of Sound and Vibration 109 (2) (1986) 293–307.

[21] S. Natsiavas, Dynamics of multiple-degree-of-freedom oscillators with colliding components, Journal of Sound and Vibration 165 (3)

(1993) 439–453.

[22] S. Chatterjee, A.K. Mallik, Bifurcations and chaos in autonomous self-excited oscillators with impact damping, Journal of Sound and

Vibration 191 (4) (1996) 539–562.

[23] G.W. Luo, J.H. Xie, Hopf bifurcation of a two-degree-of-freedom vibro-impact system, Journal of Sound and Vibration 213 (3) (1998)

391–408.

[24] G.W. Luo, J.H. Xie, Stability of periodic motion, bifurcations and chaos of a two-degree-of-freedom vibratory system with

symmetrical rigid stops, Journal of Sound and Vibration 273 (2) (2004) 543–568.

[25] H.Y. Hu, Controlling chaos of a periodically forced nonsmooth mechanical system, Acta Mechanica Sinica 11 (3) (1995) 251–258.

[26] J.P. Mejaard, A.D. De Pater, Railway vehicle systems dynamics and chaotic vibrations, International Journal of Non-Linear

Mechanics 24 (1) (1989) 1–17.

[27] J. Zeng, S. Hu, Study on frictional impact and derailment for wheel and rail, Journal of Vibration Engineering 14 (1) (2001) 1–6.

[28] H. True, Dynamics of a rolling wheelset, Applied Mechanics Reviews 46 (7) (1993) 438–444.

[29] L.A. Wood, K.P. Byrne, Analysis of a random repeated impact process, Journal of Sound and Vibration 78 (3) (1981) 329–345.

[30] Z.L. Huang, Z.H. Liu, W.Q. Zhu, Stationary response of multi-degree-of-freedom vibro-impact systems under white noise

excitations, Journal of Sound and Vibration 275 (1–2) (2004) 223–240.

[31] Z.Z. Shu, X.Z. Shen, Theoretical analysis of complete stability and automatic vibration isolation of impacting and vibrating systems

with double masses, Chinese Journal of Mechanical Engineering 26 (3) (1990) 50–57.

[32] J.E. Kozol, R.M. Brach, Two-dimensional vibratory impact and chaos, Journal of Sound and Vibration 148 (2) (1991) 319–327.

[33] J.H. Xie, The mathematical model for the impact hammer and global bifurcations, Acta Mechanica Sinica 29 (4) (1997) 456–463.

[34] J.M.T. Thompson, Complex dynamics of compliant offshore structures, Proceedings of the Royal Society of London A 387 (1983)

407–427.

[35] C.K. Sung, W.S. Yu, Dynamics of harmonically excited impact damper: bifurcations and chaotic motion, Journal of Sound and

Vibration 158 (2) (1992) 317–329.

[36] C.N. Bapat, C. Bapat, Impact-pair under periodic excitation, Journal of Sound and Vibration 120 (1) (1988) 53–61.

[37] P.R.S. Han, A.C.J. Luo, Chaotic motion of a horizontal impact pair, Journal of Sound and Vibration 181 (2) (1995) 231–250.

[38] M.S. Heiman, A.K. Bajaj, P.J. Sherman, Periodic motions and bifurcations in dynamics of an inclined impact pair, Journal of Sound

and Vibration 124 (1) (1988) 55–78.

[39] C.N. Bapat, The general motion of an inclined impact damper with friction, Journal of Sound and Vibration 184 (3) (1995) 417–427.

[40] A.C.J. Luo, An unsymmetrical motion in a horizontal impact oscillator, Journal of Vibration and Acoustics, Transactions of the

ASME 124 (3) (2002) 420–426.

[41] A. Kahraman, R. Singh, Non-linear dynamics of a geared rotor-bearing system with multiple clearances, Journal of Sound and

Vibration 144 (3) (1991) 469–506.

[42] A. Kunert, F. Pfeiffer, Stochastic model for rattling in gear-boxes. Nonlinear dynamics in engineering system, in: W. Schiehlen (Ed.),

Nonlinear Dynamics in Engineering Systems, Springer, Berlin, Heidelberg, 1990, pp. 173–180.

[43] T.J. Lin, R.F. Li, Z.G. Tao, Numerical simulation of 3-D gap type nonlinear dynamic contact-impact characteristics for gear

transmission, Chinese Journal of Mechanical Engineering 36 (6) (2000) 55–58.

[44] H.J. Dong, Y.W. Shen, M.G. Liu, S.H. Zhang, Research on the dynamical behaviors of rattling in gear system, Chinese Journal of

Mechanical Engineering 40 (1) (2004) 136–141.

[45] J. Guckenheimer, P.J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, second printing,

Springer, New York, Berlin, Heidelberg, Tokyo, 1986.

[46] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1998.

[47] S. Wiggins, An Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, Berlin, 1990.

[48] D.K. Arrowsmith, C.M. Place, An Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 1990.

[49] J. Carr, Applications of Centre Manifold Theory. Applied Mathematical Sciences, Vol. 35, Springer, Berling, Heidelberg, New York,

1981.

[50] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note

Series, Vol. 41, 1981.

[51] R.J. Rogers, R.J. Pick, On the dynamic spatial response of a heat exchanger tube with intermittent baffle contacts, Nuclear

Engineering and Design 36 (1976) 81–90.

[52] B.C. Wen, F.Q. Liu, Theory and Application of Vibratory Mechanism, Mechanism Industry Press, Beijing, China, 1982.

[53] B.C. Wen, Y.L. Li, Q.K. Han, Theory and Application of Nonlinear Oscillation, Northeast University Press, Shenyang, China, 2001.


	Double Neimark-Sacker bifurcation and torus bifurcation �of a class of vibratory systems with symmetrical rigid stops
	Introduction
	Mechanical model
	Period-one double-impact symmetrical motion and disturbed map
	Center manifold and normal form map
	Local codimension two bifurcations of the normal form map
	The classification of unfoldings cases
	The bifurcation sets and phase portraits for the unfoldings for cases 1, 2, 3, 4, 5, 6(b), 7(b), and 8
	The bifurcation sets and phase portraits for the unfoldings for cases 6(a) and 7(a)
	The bifurcation sets and phase portraits for the unfolding for case 6(a)
	The bifurcation sets and phase portraits for the unfolding for case 7(a)


	Numerical analyses
	Conclusions
	Acknowledgement
	References


